

LEITZ REFERENCE Xe / Rotary Table

VERSION 2017-6

LEITZ REFERENCE Xe / RT | VERSION 2017-6

TECHNICAL DATA

Description Accurate and fast universal measuring machines in moving bridge design.

Suitable for quality departments and production lines.

Applications

Coordinate measurements Inspection of any kind of parts and geometries for manufacturing as well as for R&D.

For quality control centres and inline shop floor inspection.

Gear inspection For gear diameters of up to 850 mm. Capable of measuring any type of gear, gear segments and gear

racks. No rotary table required for gear inspection.

Form testing Quality control of industrial form tolerances: roundness, cylindricity, flatness, straightness and profile.

Design

Frame Moving bridge design with patented TRICISION™ technology.

Guide ways Granite table with integrated dove tail guide. Pre-loaded air bearings in all axes.

Drives Servo motors and steel-enforced belt drives.

Length measuring system High resolution steel scales with incremental, electro-optical transducers.

Resolution 5 nm $(0.005 \mu m)$

Temperature compensation Automatic temperature compensation for scales and work piece.

Damping system Elastomere damping (optional: active pneumatic damping).

Electronics and Safety

Control cabinet B5 Modern microprocessor controller in a service-friendly, modular design with integrated monitoring.

Remote diagnostics through Hexagon service via internet available (optional).

Collision protection For styli, in setup mode.

Safety standards CE-certificate; CE-conform with machine directive (2006/42/EG), EMC directive (2014/30/EU).

Supply Specifications

Protection class IP 54

Operating voltage 230 V, $\pm 10\%$; 50 - 60 Hz; P, N, PE

Power requirement 1.4 KVA

Power consumption 0.6 KVA

Rated current 6 A

Recommended main fuse 16 A

Air Supply

Pressure $\geq 0.55 \,\mathrm{MPa} \,(5.5 \,\mathrm{bar})$

Consumption approx. 79 Nl/min plus 35 Nl/min oRT2 / oRT4

Quality According to ISO 8573-1: 2010 [4:4:4]

Options • Automatic styli changer, TravelRack

• Manual and automated part loading systems

• Automatic workpiece temperature sensor

• Active pneumatic damping

SPECIFICATIONS REFERENCE Xe / RT - FIXED HEAD

Max. permissible Errors MPE [µm] acc.	to:	Temperature range	15.9.7	22.12.9
ISO 10360-2 (2010)				
Volumetric length measuring error (1), (2)	E ₀ / E ₁₅₀	18-22° C	1.4 + L / 350	1.9 + L / 350
Repeatability range (1),(2)	R ₀		0.9	1.0
ISO 10360-4 (2000)				
Single stylus Form error, scanning (3)	THP		2.4/50s	2.6/50s
ISO 10360-5 (2011)				
Single stylus form error (2)	PFTU		1.4	1.8
Multi styli form error (4)	PFTM		3.0	3.2
Multi styli size error (4)	PSTM		1.5	1.6
Multi styli location error (4)	PLTM		2.3	2.4
ISO 12181				
Form measurement error (5)	RONt		1.6	1.9

SPECIFICATIONS REFERENCE Xe - ARTICULATING HEAD

Max. permissible Errors MPE [µm] acc.	to	Temperature range	15.9.7	22.12.10
ISO 10360-2 (2010)				
Volumetric length measuring error (1),(6)	E ₀ / E ₂₀₀	18-22° C	1.7 + L / 350	2.1 + L / 350
Repeatability range (1),(6)	R ₀		1.2	1.3
ISO 10360-4 (2000)				
Single stylus Form error, scanning (3)	THP		2.5/45s	3.0/45s
ISO 10360-5 (2011)				
Single stylus form error ⁽⁶⁾	PFTU		1.7	1.9
Multi styli form error ⁽⁶⁾	PFTM		5.1	5.4
Multi styli size error ⁽⁶⁾	PSTM		2.9	3.0
Multi styli location error (6)	PLTM		3.9	4.0
ISO 12181				
Form measurement error (5)	RONt		1.8	2.0

Permitted Environmental Conditions					
Temperature gradients (hour/day/meter)	18-22°C:1/2/1K				
Relative air humidity 30% – 70%, non condensing					
Throughput					
Probing frequency	35/min				
Max. positioning speed	520 mm/s				
Max. acceleration	4000 mm/s ²				

 $^{^{\}scriptscriptstyle{(1)}}\,E_0,\,E_{150}$ and R_0 are valid

 $^{(\!4\!)}$ PFTM, PSTM, PLTM are valid $\,$ for 5 Leitz styli ø 5 x 80 mm. To be tested near the reference sphere. for a Leitz stylus ø 5 x 80mm, filter 50 UPR, with precision calibration. Verification with QUINDOS only.

for a length gauge with an uncertainty of calibration of $\leq 0.08 + 0.3 \times L/1000$ and a CTE between $8 \times 10^{-6} / K$ and $13 \times 10^{-6} / K$.

⁽²⁾ E₀, R₀ and PFTU are valid

For measuring lengths of more than 1000 mm the availability of adequate gauges has to be confirmed with the manufacturer. for Leitz styli from Ø 3 x 35 mm up to Ø 8 x 130 mm, without extension; anywhere in the measuring volume.

⁽³⁾ THP is valid

for a Leitz stylus \emptyset 5 x 80mm.

⁽⁵⁾ RONt (MZCI) is valid

 $^{^{(6)}}$ E₀, R₀ and PFTU are valid

Form measurement error (roundness) at a ø 50 mm ring gauge, in scanning mode, acc. to EN ISO 12 181 (VDI/VDE 2617, part 2.2)

for HH-A-T7.5 with Leitz stylus ø 3 x 50 mm, without extension; anywhere in the measuring volume.

TECHNICAL DATA - PROBE HEADS

Leitz Probe Heads Reference Xe / RT	HP-S-X5	HH-A-T7.5 / HP-S-X1H	
Measuring methods	3D-self-centring, Scanning, variable High	h Speed Scanning VHSS, Tag-Scan, Scan Catch	
Max. data rate	1000 points/s	1000 points/s	
Probing force	0.1 to 1.2 N	0.1 to 0.6 N	
Max. stylus lenght	500 mm	225 mm, cranked styli ≤ 100 mm	
Max. stylus weight (incl. stylus clamping)	500 g	33 g	
Smallest tip diameter	0.3 mm	0.3 mm	

TECHNICAL DATA - ROTARY TABLE

Description High precision rotary tables for Leitz measuring machines. "On top" versions, removable from the machine table Types

Specifications

	oRT 2	oRT 4
Maximum table load - Mass placed central	50 kg	250 kg
Resolution	0.035 arc sec	0.035 arc sec
Max. rotating speed	12 rpm	12 rpm
Permissible moment of inertia	1 kgm²	15 kgm²

Design

Bearings High accuracy, pre-stressed air bearings

Drive High performance servo motor, with zero backlash Harmonic-Drive transmission

Belt drive system with minimized shear force

Measuring system High resolution electro-optical rotary encoder

Measuring Modes 4-Axis scanning (with QUINDOS)

SPECIFICATIONS

Four-axis measuring ISO 10360-3 (2000) in	errors MPE according to µm ⁽¹⁾⁽²⁾	FR radial	FT tangential	FA axial
oRT2				
Reference Xe / RT	15.9.7 / 22.12.9/10	4.5 / 4.7	4.2 / 4.7	3.3 / 3.5
oRT4 ⁽³⁾				
Reference Xe / RT	15.9.7 / 22.12.9/10	4.7 / 5.1	4.5 / 5.8	3.6 / 4.2

 $^{^{(1)}}$ FR, FT and FA are valid for a Leitz stylus ø 5 mm, L = 80 mm; the RT in upright position

The max. table load of a Leitz CMM with oRT 2 / oRT 4 is reduced by the weight of the rotary table.

DIMENSIONS

Model	Diameter [mm]	Length [mm]	Height [mm]	Weight [kg]	
oRT 2	185	340	153	25	
oRT4	415	560	230	125	

⁽²⁾ Specifications are valid for central positioning in XY ⁽³⁾ FR, FT and FA are valid for $\Delta h=200$ mm and r=200 mm

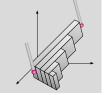
CMM CAPABILITY CHARTS AND ISO 10360

СМІ	CMM Capability Charts - Distances and Diameters								
		Distance or diameter [mm]							
		50	100	200	400	600	1000		
	± 0.010	0.9 + L / 400	0.8 + L/500	0.6 + L / 500	0.5 + L / 800	0.4 + L / 1000			
nm]	± 0.015	1.3 + L / 300	1.2 + L / 350	0.9 + L/350	0.7 + L / 500	0.6 + L/700	0.4 + L / 900		
ce [r	± 0.020	1.8 + L / 250	1.6 + L / 250	1.3 + L / 300	0.9 + L/350	0.8 + L/500	0.6 + L / 700		
eran	± 0.030	2.8 + L / 200	2.6 + L / 250	2.2 + L / 250	1.7 + L/300	1.5 + L / 400	1.0 + L / 500		
Tole	± 0.050	4.7 + L / 150	4.3 + L / 150	4.0 + L / 200	3.0 + L / 200	2.6 + L / 400	1.7 + L / 300		
	± 0.070	6.7 + L/200	6.7 + L/350	6.3 + L/300	5.4 + L/250	5.0 + L/300	4.5 + L/400		

Example: A diameter of 100 mm has a tolerance of \pm 0.020 mm.

For the inspection of this feature a CMM with a length measuring error $E_0 = 1.6 + L / 250 \, [\mu m]$ is required.

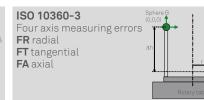
CMM Capability Charts - Form Tolerances $ ot\!\!/ $							
Tolerance	0.005 mm	0.007 mm	0.010 mm	0.015 mm	0.020 mm	0.030 mm	0.050 mm
PFTU [μm]	0.5	0.7	1.0	1.5	2.0	3.0	
THP [μm]				1.5	2.0	3.0	5.0


Example: For inspection of a roundness tolerance of 0.020 mm a CMM with a single stylus form error of PFTU= 2.0 µm respectively with a single stylus form error, scanning THP = 2.0 μm is required.

Note: PFTU and THP are specified for small areas only (up to 30 mm).

CMM capability charts are applicable only, if the feature can be measured with a stylus for which the accuracy of the CMM is specified.

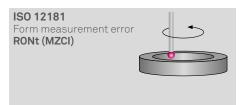
ISO 10360



5 gauges have to be measured 3 times with one probing each end, in 7 different directions. All measuring results must be within »E₁₀₀«

5 length gauges have to be measured 3 times in the YZ- or XZ plane with opposite styli, mounted 150 mm off the Z spindle axis.

Sphere A and B have to be measured in 29 defined positions. FR, FT and FA are the max. range of the centre coordinates for either A or B in X, Y or Z direction.


A precision sphere has to be scanned with 4 defined lines. THP is the range of all radii. THP = R_{max} - R_{min} = sphere form, scanning.

A precision sphere has to be measured with 25 probings. PFTU is the range of all radii. $PFTU = R_{max} - R_{min} = sphere form.$

A sphere is measured with 5 styli (fixed PH) or with 1 stylus in 5 orientations (articulating PH) with 5 x 25 probings. Form, size and location error over 125 points.

A ring gauge, ø 50 mm, is scanned with high point density. The range of radial distances is then evaluated on a calculated Tschebyscheff-circle.

GEAR INSPECTION

Gear Measuring Capability

Cylindrical gears Spur, helical, double helical, splines (internal and external)

Clutch gears Internal and external
Gear segments Minimum No. of teeth: 1
Gear racks Constant ratio, variable ratio

Bevel gears Straight bevel, spiral bevel, hypoid bevel, crown gears

Couplings Curvic, Hirth

Gear cutting tool Hob cutter, indexable insert hob, broach, shaper cutter, shaving gears, form cutter

Evaluation standards DIN, ISO, AGMA, ANSI, JIS, CNOMO, CAT

Available interfaces Gleason GAGE 4/WIN, Klingelnberg KIMOS, DMG Mori, Depo

Measuring principle 3-Axes, gear fixed anywhere in the measuring volume. No rotary table required.

Profile and flank inspection with Variable High-Speed-Scanning with involute path control.

Alignment of the gear axis Vertical or horizontal

Max. No. of gears on pallet Not limited, depending on gear diameter and machine measuring range.

Available QUINDOS Software Modules for Gear Inspection

Gears and Worms	• Gear	• Gear Gauges	Unknown Gear	Straight Bevel Gear
	• Spiral Bevel Gear	• Cylindrical Worm	• Worm Wheel	• Globoid Worm
	• Sprocket	• Curvic Couplings	• CAT Gear	• Hirth Gear
	Rack, constant	Rack, variable		

• Rack, constant • Rack, variable

Cutting Tools • Hob Cutter • Shaper Cutter • Shaving Gear • Broach

• Form Cutter

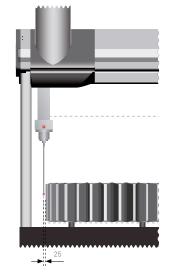
Gear related Specifications

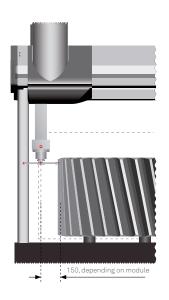
Module range 0.5 - 100 mm

Max. gear width = Z-range of the Reference Xe (vertical orientation), e. g. 700 mm for a 15.9.7

Max. shaft length = X-range of the Reference Xe (horizontal orientation), e. g. 1500 mm for a 15.9.7

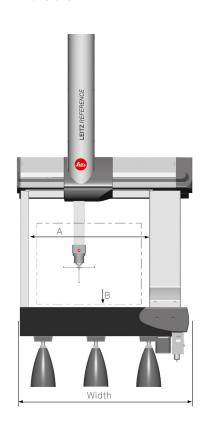
Spiral angle 0° - 90°

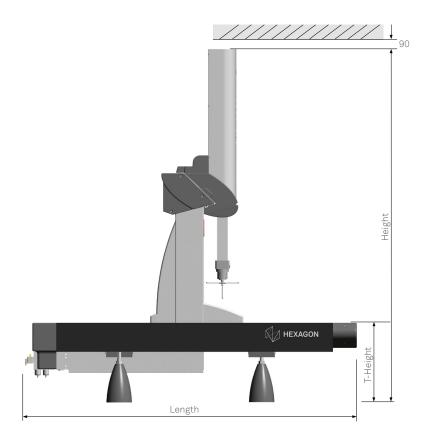

Machine accuracy Group 1 according to VDI/VDE 2612/2613, page 1 and 2


Min. Gear ø not limited

Max. Gear ø, external [mm]

	15.9.7	22.12.9/10
Spur gear	850	1150
Helical gear (1)	600	900


⁽¹⁾ depending on module and styli configuration



DIMENSIONS AND TABLE LOAD

Dimensions in mm

Model	Probe Head	Length [mm]	Width [mm]	Height [mm]	T-Height [mm]	A [mm]	B [mm]	Weight [kg]
15.9.7	HP-S-X5/X1H	2800	1560	3073	700	1030	32/72	3.400
22.12.9 / 10	HP-S-X5/X1H	3650	1860	3422	610	1330	49 / 72	7.700

MEASURING RANGES (X X Y X Z)

			Z-range oRT2	Z-range oRT4
15.9.7	HP-S-X5	1500 x 900 x 690	x 537	x 460
15.9.7	X1H / HH-A-T7.5	1500 x 900 x 760	x 607	x 530
22.12.9	HP-S-X5	2200 x 1200 x 900	x 747	x 670
22.12.10	X1H / HH-A-T7.5	2200 x 1200 x 1000	x 847	x 770

Permitted Table Load	
Reference Xe / RT 15.9.7	1500 kg
Reference Xe / RT 22.12.9/10	2250 kg

Hexagon Manufacturing Intelligence helps industrial manufacturers develop the disruptive technologies of today and the life-changing products of tomorrow. As a leading metrology and manufacturing solution specialist, our expertise in sensing, thinking and acting - the collection, analysis and active use of measurement data - gives our customers the confidence to increase production speed and accelerate productivity while enhancing product quality.

Through a network of local service centres, production facilities and commercial operations across five continents, we are shaping smart change in manufacturing to build a world where quality drives productivity. For more information, visit HexagonMl.com.

Hexagon Manufacturing Intelligence is part of Hexagon (Nasdaq Stockholm: HEXA B; hexagon.com), a leading global provider of information technologies that drive quality and productivity across geospatial and industrial enterprise applications.

COORDINATE MEASURING MACHINES

3D LASER SCANNING

SENSORS

PORTABLE MEASURING ARMS

SERVICES

LASER TRACKERS & STATIONS

MULTISENSOR & OPTICAL SYSTEMS

WHITE LIGHT SCANNERS

METROLOGY SOFTWARE SOLUTIONS

CAD / CAM

STATISTICAL PROCESS CONTROL

AUTOMATED APPLICATIONS

MICROMETERS, CALIPERS AND GAUGES

DESIGN AND COSTING SOFTWARE

Full Bright·福宫通商股份有限公司

總公司:新北市 235 中和區連城路 258 號 3F-3 (遠東世紀廣場 [棟)

Tel: 02-82271200 Fax: 02-82271266

Http://www.fullbright.com.tw E-mail: sales@fullbright.com.tw 台北 Tel: 02 - 82271227 Fax: 02 - 82271191 04 - 24736300 Tel: Fax: 04 - 24734733 台中 07 - 3430296 高雄 Tel: 07 - 3430270 Fax:

Fax: 512 - 57751293 昆山 Tel: 512 - 57751291 東莞 Tel: 769 - 85847220 Fax: 769 - 85847229

www.fullbright.com.tw